Net flux of amino acids across the portal-drained viscera and liver
of the ewe during abomasal infusion of protein and glucose'?
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ABSTRACT: The objective of the study was to mea-
sure net AA flux rates across the portal-drained vis-
cera (PDV) and liver in the presence and absence of
abomasal glucose infusion. Decreasing the fraction of
AA metabolized by the mucosal cells may increase the
fraction of AA being released into the blood. A poten-
tial mechanism to reduce AA catabolism by mucosal
cells is to provide an alternative source of energy. We
hypothesized that increasing glucose flow to the small
intestine would increase net appearance of AA across
the PDV. Eighteen mature ewes with sampling cath-
eters were placed on study. The experimental design
was a split-plot with a complete randomized design on
the whole-plot and a Latin-square subplot with 5 peri-
ods and incremental levels of protein infusion. One-half
of the ewes received abomasal glucose infusions (3.84
g/h), and all ewes received each of 5 protein abomasal
infusion levels over 5 periods (0, 2.6, 5.2, 7.8, and 10.5
g/h). Net PDV release of isoleucine, leucine, methi-
onine, phenylalanine, aspartate, glutamate, glutamine,

proline, serine, and tyrosine increased linearly with in-
creased protein infusion, and net PDV release of histi-
dine, lysine, threonine, valine, alanine, and glycine did
not differ with protein infusion. Net hepatic glucose re-
lease decreased with glucose infusion. With the excep-
tion of histidine, phenylalanine, and valine, net hepatic
AA uptake increased linearly with increased delivery of
AA to the liver. Glucose infusion increased the hepatic
lysine and valine uptake and decreased phenylalanine
uptake. Based on the observations in the current study,
we reject our hypothesis that glucose can spare AA
metabolism by PDV tissue. Our findings suggest that
hepatic gluconeogenesis can be increased in the pres-
ence of increased AA delivery to the liver and that he-
patic gluconeogenesis can be decreased with increased
absorption of dietary glucose. Our findings support the
concept that for most AA. hepatic transport of AA
can be described by mass action kinetics; however, the
rates of hepatic uptake of specific AA are upregulated
directly or indirectly by elevated glucose.

Key words: amino acid, intestine, liver, sheep

©2010 American Society of Animal Science. All rights reserved.

INTRODUCTION

Providing adequate protein is important to allow ru-
minants to produce milk, meat, and fiber at a level to
support efficient animal production. However, provid-
ing excessive nitrogen to animals in confinement poten-
tially contributes to nitrogen contamination of air and
water from animal waste (Cole et al., 2005). Improved

"Mention of a trade name, proprietary product, or specific equip-
ment does not constitute a guarantee or warranty by the USDA and
does not imply approval to the exclusion of other products that may
be suitable.

*The authors would like to acknowledge the technical support of
C. Haussler (USDA, ARS. US Meat Animal Research Center, Clay
Center, NE).

*Corresponding author: Harvey.freetly G

*Present address: Department of Animal Sciences, Colorado State
University. Fort Collins 80523-1171.

Received June 30, 2009.

Accepted November 19, 2009.

s.usda.gov

J. Anim. Sci. 2010. 88:1093-1107
doi:10.2527 /jas.2009-2260

efficiency of N utilization by the animal may improve
production efficiency and reduces the negative impact
of animal excretions on the environment. Sheep and
cattle absorb feed N as ammonia, peptides, and AA
(Gilbert et al., 2008). Amino acids are used for synthe-
sis of proteins, as precursors for gluconeogenesis, and
as a source of energy (Freetly et al., 1993; Hanigan et
al., 2004b). Small intestine mucosal cells absorb dietary
AA from the lumen of the small intestine. Amino acids
that enter the intestinal epithelium are used for pro-
tein synthesis (structural and secretory), catabolized
for energy, or released into the blood through the basal
membrane. Studies in sheep (MacRae et al., 1997) and
in pigs (Stoll et al., 1998) reported that approximately
one-third of the AA absorbed by mucosal cells are me-
tabolized within the cells and are never released into
the blood. Of those AA that are metabolized, 60% are
most likely catabolized (Stoll et al., 1998), which sug-
gests that 20% of the absorbed AA arc catabolized for
energy within the mucosal cells. Nitrogen from catabo-
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Table 1 (Continued). Blood flow, oxygen consumption, and net release of glucose and urea-N by splanchnic tissue during abomasal protein infusion with

and without glucose'
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Overall/
treatment”

4 o g lized AA is transported to the liver where urea is syn-

2188 2 E thesized. Synthesis of urea and its subsequent excre-

2lesl 8 = &0 L . - . 3 i

2l ¥¥iEs = = tion requires additional energy. Decreasing the fraction

5 £ ? of AA metabolized by the mucosal cells may increase

) 2 & 2 3 the fraction of AA being released into the blood. One

= =1 = = =

2SR5 & = = potential mechanism to reduce AA catabolism by mu-

(7|2 = E cosal cells is to provide an alternative source of energy.

S|~ a 2 g B Enteral glucose oxidation increased in the neonatal pig

5 @ o] 5] g S
B o T = when dietary protein was decreased (van der Schoor

il szl 2 8 g % et al., 2001), suggesting that conversely increasing glu-
2| wls2& ¥ = iz cose supply may decrease AA oxidation. We hypothe-
= | = g2 2 = sized that increasing glucose flow to the small intestine
2 8 - g
2| = &g g =2 would increase net appearance of AA across the portal-
= % g £ : = drained viscera (PDV). The objective of the study was
5 B g H g = to measure net AA flux rates across the PDV and liver
= = g 2 . ] -
E 2 2 g 8 in the presence and abhsence of abomasal glucose infu-
> B|lme|lE = S 3 .

Al s|92AE g gy & sion.

EAE=E= & = ”
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E 5 s 4 MATERIALS AND METHODS
e —_— o= ~

= 00 © 3 5] = _f'é . . .

Tlesls & g B ok The experiment was conducted to conform with the

: Eil R the C | Use of Agricultural Animals |

e 2 B = Guide for the Care and Use of Agricultural Animals in

S E 2 = - " :
Sl m|aelyg @ o 2 ; Agricultural Research and Teaching (FASS, 1999) and
2 H|Fela F g g was approved by the US Meat Animal Research Center
— ;’ = = = v pp v
= £ F 2 & Animal Care and Use Committee.
= 12 = = = : .
gl B|=els 5 = £ & Eighteen multiparous (5.4 £+ 0.3 yr) polled Dorset
g 2|2 8 g = - g 2
g | H 5= 3 E = B ewes (71.7 + 0.7 kg) were individually penned (1.17 m
Z ~ B g T £ & Y I
= sw|l® 85 &2 = “; in a temperature-controlled room (19°C). Ewes were
= ; i = ) o - a 2 - i
3 ~|Eg|g = S 2 = fed a pelleted diet (95% brome hay and 5% soybean
g =~ & =@ B o meal, as DM) at 52.2 g/BW kg"™. The diet contained
57 =/ =] = & = 5 ;
2| Bleel|ld 5 2E & = 10% CP and had a calculated ME of 1.96 Mcal/kg
7] w Ty = = o % - 3 . s . y
sl H{*=|® £ SH - E DM basis). The diet provided adequate ME and pro-
= .= 7 W+ z = I
2 ¢ E &g § £ tein to exceed maintenance requirements (NRC, 2007).
5 5 ¢ EE 2 § : : ’
sl ala3lg & Ze £ £ Ewes were fed a single meal daily at 1500 h. Ewes had
= o) G o= = | g grek - - ] ]

? i B " D : ! g . 3.t -5 - and : 3 al a t
=) ¥ 5 25 £ & ad libitum access to water and a mineral supplemen
wn = o = bt < "
3| o . 2 aw 5 = (65.012% NaCl, 16.380% CaO,, 16.199% CaHPO,,
|l w222 8 9§ o 4 0.106% FeSO,, 0.058% ZnO, 0.043% Mn;0,, 0.001%
gl " g 3 3 £ 8 C,HgN,2HI, 0.001% CoCO 12.200% b il)

z g g = & 9 oHgNo2HI, 0. /0 CoCO;5 and 2. /0 soybean oil).
g g S =25 & & o i - ; o
El =eals B 25 £ F Catheters were surgically placed in the hepatic portal
w o p e [ R =~ i O b= = ®E . " u
8| = | e i A e B B vein, a branch of the hepatic vein, a mesenteric vein,
= “ & BY 3§ £ and the abdominal aorta as described by Ferrell et al.
@ 3 o g8 B 3 . ¢ .
2| Blwo|R2 @ L2 @ B 1992). In addition to the catheters placed for samplin
8| Aleses|® 1 S8 5 3 . ¢
< 2 s = gz = = blood. a catheter was placed in the abomasum to fa-
fes =] = 5 = e o O Ol T 2L l I & ) o
cwol|& § 279 e 2 cilitate infusion of glucose and protein. The abomasal
cLlE .8 ~wmd 8 B ; -

olpgz|lssgd ¥ & 2 catheter consisted of a 1-m length of Tygon tubing (1.59

welgag SRS g =2 @ ) ) - :
e 8TEE TEE mm i.d., 3.18 mm o.d.: Saint-Gobain Performance Plas-
A8 & =" o " .
g oonol S5 8 tics, Akron, OH) that had a pair of cuffs constructed of
S5 H B 2EP

= BEFTEEZ BT Tygon that formed a 5-cm tip. A small hole was created

3 —_ 8 == Hm s T . . . .

H Fos g EZ g g = by dissection in the fundus of the abomasum, and the

= am|mYL.as (=i e B i 5 . 3 Y

= gEgHEEg oEgd tip of the catheter was inserted into the abomasum.

= 2 &0 o 2 o8 L= 9 )

2 aHEE R P32 o The catheter was sutured to the abomasum using a

P Y, 28 29 - . oy e

Sgaf 8 S Eqn -;; purse string suture at the cuff and an additional suture
BHEs cgu g2 —>1
CEESRNEHEE 5 2 on the surface of the abomasum.
e He sE25S g3
ac82ac2 8y & 3 Ewes were sorted on age and BW and randomly as-
Qe o 8 @ 3o 2+ 15— . . ¢ iR r "
CBEH g B85 8 signed to 1 of 2 treatments within age and BW. Treat-
Buwm® 85 22 8 ; >
¢|Eg =g ZE% - ments were glucose infusion into the abomasum (3.84
2l e == E=EE = . s . g
gE|E5E8823585 8 fl g/h) or no glucose infusion into the abomasum (con-
s e ) = RS Q= T )

a| BE|E S 2EZEo2ERA trol). Glucose infusion rate equaled the expected net

= ] y e e il . .

glmd|” BT &7 = S hepatic release rate (Freetly and Klindt, 1996). Sample
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Table 2 (Continued). Net release of essential AA (mmol/h) by splanchnic tissue during abomasal protein infusion with and without glucose’

Amino acid absorption in ewes 1097

. : ER collection began 5 wk after surgery and consisted of 5
2 g i E P B ;‘EE collection peyiods. Du.rm_g ea?h couectlon period, ewes
gl S Z o 8 received 1 of 5 protein infusions into the abomasum,
& z = 5 = such that over the course of the experiment each ewe
% 2|1 a8|% 823 received each of the 5 levels of protein infusion. The
# | =ee) 2 protein infusions consisted of a combination of an iso-
& % 2 g lated sov protein (Ardex F Dispersible, Archer Daniels
2 2 E Midland Company, Decatur, 1L) and cysteine. The 5
y 2 - infusion levels delivered the following amounts of pro-
t ' C % tein each hour: (0 g of soy protein + 0 g of cysteine),
R 2 g e (2.4 g of soy protein + 0.216 g of cysteine), (4.8 g of soy
5 7 g protein + 0.432 g of cysteine), (7.2 g of soy protein +
2l Elaald ¥ 0.648 g of cysteine), and (9.6 g of soy protein + 0.864
B E S 3 ; f g of cysteine). Abomasal infusions were delivered at a
S "B rate of 1.5 mL/min using a peristaltic pump. Glucose
Pl 8lewl|® 8 was mixed with the infusate for the ewes receiving the
- _5 aZ|E § glucose treatment. Protein levels ranged from approxi-
“ = E = mately one-half to 2 times the protein provided by the
-—2_ = z basal diet. Ewes were allowed 2 wk between collection
f = & - - periods.
?:3‘ ‘ 2 : = On the day that net flux measurements were taken,
2 F 3 g abomasal infusions of protein with glucose (glucose
=] = = 2 3 = treatment) and abomasal infusions of protein without
= =2 < z % = glucose (control) were started at 0800 h (17 h after the
E & = 2 = meal). Abomasal infusions continued throughout the
| = . z B rest of the day. Three hours after abomasal infusions
| R E £ were started, a 15-mL bolus of para-amino hippuric
E % z g acid (PAH; 0.15 M) was given via the mesenteric vein.
2| B g £ 8 The bolus was followed by a constant infusion of PAH
2 = B % £ (0.8 mL/min). Four hours after abomasal infusions were
;‘ . % E_f - = initiated, blood samples were collected into heparinized
| 4 g 9 2 g 3 syringes (9 mL) from the aortic, hepatic portal venous,
z g 2 £Eg § = and hepatic venous catheters. An additional sample (1
= £ £E=3 E = L‘f ml) was anerobically collected from each catheter into
= | = | ol g = 3 a heparinized syringe to determine hemoglobin concen-
- il s 2 B tration and oxygen saturation of hemoglobin (Hemoxi-
z & = o ;T ol :] meter Model OSM 3, Radiometer America, Westlake,
H g = o 2 OH). Sets of blood samples were collected every 30 min
E 5 B g E 2 = for a total of 5 sets of samples.
2l bt n: s & & & Fresh blood samples were analyzed for ammonia
- F = - R E N, urea-N, PAH, and lactate as described by Freetly
_’; . 2 TEem é z and Ferrell (1998). Blood glucose (glucose oxidase, EC
:“ & B = 0 1.1.3.4), glutamate (glutamate oxidase, EC 1.4.3.11),
ks £ g and glutamine (glutaminase, EC 3.5.1.2 and glutamate
2 g _ E 2 oxidase, EC 1.4.3.11) concentrations were determined
= 58 e A 3 on a membrane-immobilized system (model 2700, Yel-
o SEE 3 low Spring Instrument Co., Yellow Springs, OH). Blood
% 2 2858 3 AA were analyzed according to the procedure of Calder
A1k f E 2 B = et al. (1999). Blood flow was calculated using PAH in
| | =e & :‘z g E§ the indicator-dilution technique (Katz and Bergman,
g =R 1969b). Net fluxes of nutrients were caleulated by mul-
gl /82 s-£288 <5 tiplying the concentration difference between vessels
| ENEEHdE ¢ by the blood flow rate (Katz and Bergman, 1969a).
2 S EgETE Blood chemistries were analyzed for each replicate sam-
ks ——i - = : 25 ple within ewe and period, and individual fluxes were
g éc:f : i o —Sc o calculated for each replicate sample. Rep]ica;te samples
¢E|2SEBEE5 2. 2 were averaged within period and ewe. Replicates that
2 3 a é z EZD g exceeded 1 SD of the within-ewe period mean and nega-
T | meE]T T il tive blood flows were removed from the data set.
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Table 4. Hepatic extraction:

rate to the liver (mmol/h)

Amino acid absorption in ewes

net hepatic AA uptake (mmol/h) = f(x) = byx’+ b;x + by, where x = AA delivery
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Range delivered,’

AA mimol/h b, +SE by +SE by, +SE Prgsa: P i P 2
Essential
Histidine 0.2/t 32.3 0.02216 0.00795 —0.2579 0.2513 0.5496 1.0432 0.23 0.007 0.31
Lysine 2.1 to:3d.7 0.07 I = 0.006
Control 0.1477 0.0556 —1.6361 0.7095
Glucose 0.2399 0.0479 —1.6361 0.7095
Phenylalanine 2.7t0 14.8 0.06 I=0:02 I=0.02
Control —0.01138 0.00576 0.3207 0.1012 —0.7019 0.4319
Glucose —0.00519 0.00683 0.2488 0.1100 —-0.7019 0.4319
Valine 6.5 to 57.8 0.14 I=0.03 TI=0.005
Control 0.00243 0.00116 —0.0704 0.0724 0.8333 1.0284
Glucose 0.00499 0.00188 —0.0149 0.0901 0.8333 1.0284
Isoleucine 3.5 to 16.1 — - 0.0643 0.0246 —0.4008 0.2677 1.00 ~ 0.01
Leucine 5.8 to 26.0 — 0.0600 0.0245 —0.5957 0.4215 1.00 - 0.02
Methionine 0.7 to 3.5 0.1136 0.0246 —0.0868 0.0549 0.78 <(0.001
Threonine 3.0 to 28.2 0.057 0.0252 —0.2197 0.3980 0.18 0.10
Nonessential
Alanine 10.2 to 38.5 - 0.1502 0.0438 —1.1893 1.0004 0.69 <0.001
Aspartate 0.4 to 8.3 — 0.1537 0.0488 0.0756 0.2384 0.26 - 0.004
Glutamine 23.5 to 108.3 — 0.07784  0.0238 3.7804 2.0396 0.70 e 0.003
Glycine 17.0 to 55.8 — 0.07955  0.04088 —1.8288 1.4160 0.38 0.02
Proline 4.2 to 18.4 - 0.1033 0.02311 —(.6856 0.2952 0.74 = <0.001
Serine 3.9 to 17.0 0.1697 0.0324 —0.7115 0.3659 027 == <0.001
Tyrosine 3.1t017.8 = 0.09960  0.0216 —0.1777 0.2143 0.55 <0.001

'Regressions were conducted on all observations for all ewes (control n = 40 and glucose n = 45 except control Lys, and His n = 37 and glucose

Lys n = 43 and His n = 42).
*Probability that glucose-infused ewes differed from control ewes.

*Probability that the linear and quadratic regression coefficient differed from zero. The values labeled as equal to 1 are the P-values associated
with interaction between protein and glucose treatment when the interaction was significant.

The experimental design was a split-plot with a com-
plete randomized design on the whole-plot (glucose in-
fusion) and a Latin-square subplot with 5 periods and
incremental levels of protein infusion. The data were
analyzed with a model that accounted for period, glu-
cose infusion, protein infusion level, and the interaction
between glucose infusion and protein infusion level as
fixed effects, and animal within glucose level as a ran-
dom effect using the MIXED procedure (SAS Inst. Inc.
Cary, NC). Glucose infusion levels were tested using the
whole-plot error term (animal within glucose infusion),
and protein infusion level and the interaction between
glucose infusion and protein infusion level were tested
with the subplot error term (residual). Linear and qua-
dratic effects of protein infusion level were tested with
orthogonal contrasts. Hepatic extraction ratio was cal-
culated across all animals by regressing net hepatic up-
take on delivery rate (arterial concentration x arterial
blood flow + portal concentration x portal blood flow).
Linear and quadratic responses for hepatic extraction
were tested with the same design except AA delivery
rate was treated as a linear covariate, quadratic covari-
ate, or both. A step-down procedure was used to deter-
mine whether hepatic excretion response was quadratic
or linear. Statistical analyses were conducted using the
MIXED procedure in SAS. Means were considered sta-
tistically different when P < 0.05, and means were con-
sidered to tend to differ when 0.05 < P < 0.10.

RESULTS

The hepatic catheter failed in one of the control ewes,
resulting in missed observations for hepatic concentra-
tions, on metabolites and net release of hepatic and
splanchnic metabolites,

PDV

Portal venous blood flow decreased linearly with pro-
tein infusion (P = 0.04; Table 1). Portal-drained viscera
oxygen consumption did not differ between ewes re-
ceiving glucose (148.4 + 6.5 mmol/h) and control ewes
(148.8 + 6.2 mmol/h; P = 0.89; Table 1).

Control ewes had a negative release (net uptake) of
glucose (Table 1). Net PDV glucose release was greater
(P < 0.001) and was positive in ewes abomasally in-
fused with glucose (Table 1). Net glucose release from
the PDV responded quadratically to protein infusion (P
= 0.03) with net release being greater at intermediate
levels of protein infusion (Table 1). Net PDV lactate
release from glucose-infused ewes (7.33 £+ 0.78 mmol/h)
did not differ (P = 0.33) from control ewes (8.45 + 0.78
mmol/h) and did not differ linearly (P = 0.16) or qua-
dratically (P = 0.40) with protein infusion.

Net PDV ammonia release did not differ (P = 0.42)
between glucose-infused ewes (30.5 + 1.79 mmol/h)
and control ewes (32.6 £ 1.79 mmol/h) and did not
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differ linearly (P = 0.70) or quadratically (P = 0.49)
with protein infusion. There was a negative release (net
uptake) of urea by the PDV, and a glucose infusion x
protein infusion interaction (linear; P = 0.008; Table
1).
Net PDV release of isoleucine, leucine, methionine,
and phenylalanine increased linearly with increased
protein infusion (P < 0.001 to 0.02), and threonine
tended to increase linearly (P = 0.09; Table 2). Net
PDV release of aspartate, glutamate, glutamine, pro-
line, serine, and tyrosine increased linearly (P < 0.001
to 0.05; Table 3) with increased protein infusion; how-
ever, glutamine release remained negative (net uptake)
over the range of infusion levels. Net release of gluta-
mate was negative initially and became less negative as
protein infusion increased (Table 3). There was a net
PDV release of alanine, glycine, and aspartate (Table
3). Net release of individual nonessential AA did not
differ (P = 0.20 to 0.64) between glucose-infused and
control ewes (Table 3).

Liver

Hepatic arterial blood flow responded quadratically
to increased protein infusion; intermediate levels of pro-
tein infusion have decreased blood flows (P = 0.003;
Table 1). There was an interaction between glucose in-
fusion and the linear relationship of protein infusion
(P = 0.005) for hepatic venous blood flow (P = 0.005;
Table 1), where initial rates of blood flow were greater
for the glucose-infused ewes. Hepatic oxygen consump-
tion responded quadratically to increased protein infu-
sion with intermediate levels of protein infusion hav-
ing decreased rates of oxygen consumption (P = 0.05;
Table 1).

Net hepatic glucose release was less in glucose-infused
ewes (Table 1; P = 0.007) than in control ewes and
increased quadratically with protein infusion in both
treatments (Table 1; P = 0.004). Net hepatic lactate re-
lease was negative (net uptake), and ewes infused with
glucose (—6.96 + 1.33 mmol/h) did not differ from con-
trol ewes (P = 0.07; —3.22 + 1.33 mmol/h) nor did it
differ linearly (P = 0.80) or quadratically P = 0.56)
with protein infusion.

Net hepatic ammonia release was negative (net up-
take), and ewes infused with glucose (—31.59 £ 1.75
mmol/h) did not differ from control ewes (P = 0.58;
—33.03 + 1.86 mmol/h) nor did they differ linearly (P
= 0.86) or quadratically with (P = 0.27) with protein
infusion. Net hepatic urea release increased linearly
with increased protein infusion (P < 0.001; Table 1).

Net hepatic release of threonine was negative for
both treatments, and net release was greater in glucose-
infused ewes than control ewes (P = 0.04; Table 2). Net
hepatic release of lysine, methionine, and phenylalanine
decreased (increased uptake) with increased protein in-
fusion (P = 0.001 to 0.006), and net hepatic threonine
tended to decrease (P = 0.07; Table 2). Net hepatic
histidine responded quadratically with protein infusion,
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and there was an interaction between protein infusion
and glucose treatment (P = 0.04; Table 2). Net hepatic
release of glutamine decreased linearly with increased
protein infusion such that the release rate became nega-
tive (P < 0.001; Table 3). Net hepatic release of alanine,
proline, tyrosine, and serine was negative (net uptake)
and decreased lincarly with increased protein infusion
(P = 0.001 to 0.05; Table 3), and net serine release was
greater in glucose-infused ewes compared with control
ewes (P = 0.02; Table 3). There was a net hepatic re-
lease of glutamate (Table 3).

With the exception of histidine, phenylalanine, and
valine, net hepatic AA uptake increased linearly with
increased delivery of AA (Table 4). Glucose infusion
increased the hepatic uptake of lysine and valine with
respect to delivery rate, and phenylalanine extraction
decreased (Table 4). Hepatic histidine uptake decreased
quadratically with respect to delivery rate (Table 4).

Blood Metabolites

There was an interaction between glucose infusion
treatment and protein infusion (P < 0.001; Table 1).
Arterial concentrations of blood glucose increased with
glucose infusion and increased linearly with increased
protein infusion (P < 0.001; Table 1). Portal vein glu-
cose concentrations followed a similar pattern as arte-
rial glucose concentrations (Table 1). The pattern of
hepatic glucose concentrations differed from that of ar-
terial and portal in that the glucose concentration of
glucose-infused ewes was not greater than control ewes
(Table 1).

Arterial and portal vein concentrations of urea-N did
not differ with ghicose infusion, and the concentration
of both increased linearly with protein infusion (Table
1). Hepatic urea-N tended to decrease (P = 0.09) with
glucose infusion and increased linearly (P = 0.005; Ta-
ble 1) with protein infusions.

With the exception of histidine, circulating concentra-
tions of essential AA increased linearly with increased
protein infusion (P < 0.001 to 0.02; Table 5). Arterial
isoleucine concentrations were greater in control ewes
but increased at a slower rate with protein infusion
compared with glucose-infused ewes (P = 0.04; Table
5). Arterial concentrations of leucine, methionine, thre-
onine, and valine increased (P < 0.02 to 0.055) with
glucose infusion (Table 5).

With the exception of glycine (P = 0.13), arterial
concentrations of nonessential AA increased with in-
creased protein infusion (Table 6). The rate of increase
differed between treatments for alanine, glutamate, glu-
tamine, proline, and serine (Table 6).

DISCUSSION

A short-term infusion was selected over a long-term
infusion. Responses to the 2 experimental models may
differ to the extent that long-term infusion would al-
low the intestinal tissue to adapt and use protein as
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an energy source when it is in excess. Feed intake lev-
els were set to provide approximately the amount of
ME required for maintenance, and CP was set slightly
greater than maintenance for nonpregnant, nonlactat-
ing ewes (NRC, 2007). Protein infusion rates were set
such that the intermediate infusion rate would be simi-
lar to the endogenous flow rate. Glucose infusion rate
was set equal to the predicted net hepatic release of
glucose in nonpregnant, nonlactating ewes (Freetly and
Klindt, 1996). Our previous study (Freetly and Klindt,
1996), demonstrated a quick adaptation by the liver to
increased glucose entry rate.

Amino acids that enter the intestinal epithelium
are used for protein synthesis (structural and secre-
tory), catabolized for energy, or released into the blood
through the basal membrane. Studies in sheep (Mac-
Rae et al., 1997) and in pigs (Stoll et al., 1998) reported
that approximately one-third of the AA absorbed by
the enterocyte are metabolized within the enterocyte
and are never released into the blood. Of those AA that
are metabolized within the enterocyte. 60% are most
likely catabolized (Stoll et al., 1998), which suggests
that 20% of the absorbed AA are catabolized and used
as a source of energy within the enterocyte. Reducing
the proportion of AA catabolized for energy could po-
tentially result in an increased efficiency of dietary AA
being released into the blood. Enteral glucose oxidation
increased in the neonatal pig when dietary protein was
decreased (van der Schoor et al., 2001). Our hypothesis
was that catabolism of AA would be reduced by in-
creasing the supply of glucose as an alternative energy
substrate. In ruminants, little glucose escapes rumen
fermentation, particularly on forage diets. Some glucose
is available for absorption from the lumen in diets that
have a large quantity of bypass starch (Kreikemeier et
al., 1991; Bauer et al., 1995). In the current study, ewes
that did not receive glucose infusion had a net uptake
of glucose by the PDV, suggesting that glucose was
being removed from arterial blood and catabolized by
PDV tissue. Net PDV release of glucose increased 14.5
mmol/h compared with control ewes, which resulted in
a net release of glucose from the PDV. This increase
in release represented 68% of the glucose infused into
the abomasum (21.3 mmol/h). In a study with steers,
Kreikemeier et al. (1991) reported that net PDV glu-
cose release increased with increased abomasal glucose
infusion and that the increase in net PDV release ac-
counted for 62 to 108% of the infused glucose. There
are tissues within the PDV that are net users of glucose
(i.e., rumen complex and mesenteric adipose). The ra-
tio of net release to infusion rate is an underestimate of
net appearance across the small intestine. Kreikemeier
et al. (1991) reported that disappearance rates from the
lumen ranged from 71 to 100%. The positive net PDV
release of glucose with glucose infusion suggests that
glucose absorbed from the lumen was in excess of that
metabolized by the mucosal cells. Studies in neonatal
pigs (Reeds et al., 2000) indicated that catabolism of
enteral glucose is incomplete with 68% of the carbon
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appearing as lactate and alanine. In the current study,
PDV lactate and alanine fluxes did not increase with
glucose infusion.

There were no differences in net PDV release of in-
dividual AA when glucose was infused, suggesting that
glucose did not spare AA from catabolism in the mu-
cosa. For most AA, there was a net PDV release of
AA with the notable exceptions being glutamate and
glutamine. Tracer studies in the neonatal pig (Reeds et
al., 2000) have shown that over 95% of the dietary glu-
tamate and 11% of the glutamate arriving from the ar-
terial blood are extracted by the PDV. Those data indi-
cate that 63% of the dietary glutamate carbon could be
accounted for in products of catabolism (CQ,, lactate,
alanine). In the neonatal pig, 36% of the CO, originates
from glutamate catabolism (Reeds et al., 2000). In ad-
dition to catabolism, glutamate is used for biosynthetic
purposes including protein synthesis and as a precur-
sor for glutathione, arginine, and proline (Reeds et al.,
2000). In this study, there was a net uptake of gluta-
mate until protein infusion rate reached 10.5 g/h, and
then there was a net release. Our findings suggest that
it is possible to saturate the capacity of the PDV to
catabolize and metabolize glutamate.

Results from reports on net flux of glutamine from
PDV have been mixed with some studies reporting a
net uptake (Heitmann and Bergman, 1981; Reeds et
al., 2000; current study), and others have reported a
net release (Lobley et al., 2003; Hanigan et al., 2004b).
Isotope studies in neonatal pigs (Reeds et al.. 2000)
reported elevated (22%) PDV extraction of glutamine
from arterial blood and that arterial glutamine ac-
counted for 15% of the CO,. In the current study, there
was a net negative PDV release of glutamine, but the
rate of release increased with increased protein infusion
rates. Doepel et al. (2007) reported an increased net re-
lease of glutamine when glutamine was infused into the
abomasum of dairy cows and that 83% of the infused
glutamine could be accounted for by the increase in
net PDV glutamine and glutamate release. Data from
our study, combined with the observations of Doepel
et al. (2007), suggest that although PDV metabolizes
glutamine, absorption of dietary glutamine can exceed
the rate of metabolism.

Net PDV release of isoleucine, leucine, methionine,
phenylalanine, aspartate proline, serine, and tyrosine
all increased linearly with increased abomasal protein
infusion. There were no quadratic effects, suggesting
that the capacity for absorption and transport of these
AA into the circulation were not limiting. El-Kadi et al.
(2006) observed linear increases in net release of these
same AA when casein was infused into the duodenum
of sheep at a rate of 105 g/d with the exception of
serine. Net PDV release of alanine, glycine, histidine,
threonine, and valine remained constant across protein
infusion levels, which were in contrast to the linear in-
creases observed by El-Kadi et al. (2006).

Net hepatic glucose release decreased 5.5 mmol/h
with glucose infusion, suggesting that hepatic gluco-
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neogenesis is decreased with increased PDV release of
glucose. These observations are consistent with our ear-
lier observations that reported a decrease in net hepatic
glucose release when glucose was infused into the mes-
enteric venous drainage (Freetly and Klindt, 1996). In
the current study, net hepatic glucose release increased
with increased protein infusion. In nonpregnant, non-
lactating ewes, propionate and AA accounted for the
majority of the carbon taken up by the liver (Freetly
and Ferrell, 2000). The increase in net hepatic glucose
release with abomasal protein infusion was accompanied
by an increase in net hepatic uptake of gluconeogeneic
AA (alanine, glutamine, glycine, histidine, methionine,
proline, serine, and tyrosine). The increase occurred in
the control and glucose-infused ewes, suggesting that
increasing gluconeogeneic AA to the liver “pushed” glu-
coneogenesis even when there appeared to be feedback
inhibition on the liver. Wray-Cahen et al. (1997) also
observed an increase in net hepatic glucose flux when
AA were infused into the mesenteric vein of cattle.

In the Hanigan et al. (2004a) model of AA uptake
by the liver of lactating cows, AA that were taken up
by the liver were modeled using mass action kinetics.
In our study, hepatic uptake of most of the AA was lin-
early related to delivery rate, suggesting that for most
AA, mass action kinetics adequately described AA up-
take by the liver of the ewe. Lobley et al. (2001) infused
AA directly into the mesenteric vein of sheep and found
linear relations between net hepatic uptakes and deliv-
ery rates for most AA in whole blood except isoleucine,
leucine, proline, valine, citrulline, and ornithine. Those
were neither linearly nor quadratically related to deliv-
ery rate. Exceptions in our study were histidine, pheny-
lalanine, and valine. Histidine had a quadratic response
where net uptake was insensitive to delivery rate until
approximately 10 mmol/h after which hepatic extrac-
tion could be described by a linear function. There was
a quadratic response for net hepatic valine release. A
linear response would have adequately described the
relationship between valine uptake and delivery rate
in control ewes; however, in glucose-infused ewes, the
rate of hepatic valine uptake increased with delivery
rate. In control ewes, net hepatic phenylalanine release
increased until delivery rate reached 11.6 mumol/h.
These observations suggest that phenylalanine release
is regulated. Phenylalanine release did not change in
glucose-infused ewes, suggesting that the capacity of
the liver to remove phenylalanine from blood had not
been exceeded.

We observed a net hepatic release of glutamate. Heit-
mann and Bergman (1981) reported the majority of
the glutamate being released from the liver was from
nonglutamine sources and was presumably being syn-
thesized from a-ketoglutarate. Besides being a princi-
pal energy source for the PDV, there is a net uptake
of glutamate by the hindquarters of sheep (Heitmann
and Bergman, 1981), suggesting that hepatic release is
supporting a net uptake by PDV and peripheral tissue.
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In that study, conversion of glutamate to glutamine was
relatively low in PDV and hindquarters.

Based on the observations in the current study, we
reject our hypothesis that glucose can spare AA me-
tabolism by PDV tissue. Our findings suggest that he-
patic gluconeogenesis can be increased in the presence
of increased AA delivery to the liver and that hepatic
gluconeogenesis can be decreased with increased ab-
sorption of dietary glucose. Our findings support the
concept that for most AA, hepatic uptake of AA can be
described by mass action kinetics. However, the rates
of hepatic uptake of specific amino are upregulated di-
rectly or indirectly by elevated glucose.
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